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ABSTRACT

The least constant density of a spherical swarm of particles is first reviewed

for the case of circular motion about a fixed attracting mass. The density ratio

is defined as the ratio of the density of the swarm to the attracting mass divided

by the volume of a sphere whose radius is the radius of the circular orbit. The

classical linearized analysis shows that the density ratio must be at least

three. This work is extended to take into account the finite size and the variable

density of the swarm; the least density ratio is increased in each case. The

problem is then generalized to the case where the swarm is located at either

of the stable Lagrangian equilateral triangle points (L4 , L.) in the restricted

problem of three bodies. The least density ratio is now 3 - (9/4)R to first order

terms in , and the mass is that of the combined earth-moon system; since R

is approximately 1/82 in the earth-moon system, the change in density from the

classical value is slight.

The recent (1961) astronomical observations of K. Kordylewski of Krakow

Observatory (Poland) with respect to the existence of a pair of cloud-like

satellites near each stable L-point are discussed, and a dynamical model is

analyzed which yields results that are in substantial agreement with the

observations. The model assumes the existence of a small mass at either stable

L-point and dust particles moving in the surrounding region. The main tool in

the analysis is the Jacobi (energy) integral which determines the surfaces of

zero relative-velocity; the model indicates that for an appropriate and plausible

range of parameters the surfaces of zero relative-velocity can split into shapes

that are similar to those noted by Kordylewski.



THE LEAST DENSITY OF A SPHERICAL SWARM OF PARTICLES, WITH AN

APPLICATION TO ASTRONOMICAL OBSERVATIONS OF K. KORDYLEWSKI

Frederick V. Pohle

INTRODUCTION

Studies in the nebular hypothesis and in the theory of comets have led to the

consideration of the stability of a spherical swarm of particles in circular

motion about a massive center of attraction (sun). Any particle of the swarm

is attracted toward the sun, and toward the center of the swarm by particles

interior to it. If it is assumod that the particles are at least 100 microns in

diameter [1], we can restrict ourselves to gravitational forces alone and ignore

radiation forces as well as electrical ones.

To illustrate the dynamical situation in the simplest way consider a pair

of equal small particles (m1=m2 =m) in circular motion about a fixed center of

attraction M, (m/M << 1), as shown in Figure (1). For simplicity we assume

that the orbits of mI and m2 are in the same plane. The particles mi and m.

Akw At can move in circular orbits of radii (b-a)
a,

and (b+a), if the sole force on either

6 is due to M . The respective angular

velocities of the radii vectors are then

given by 2 = GM/(b-a)3 and w= GM/(b+a) 3

Figure 1

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-11-022-ORD-2059.
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where G is the gravitational constant. Thus w 1 *2 and in fact wI > W2

If the particles are in the same radius at time t = 0, the inner particle will

move more rapidly than the outer one and the particles will separate; the

distance between them will be > 2a and increasing until they are 1800 apart.

However if the forces due to mutual attraction between mI and m 2 are

included in the analysis, the force on mI will be diminished and that on m2

will be increased at t = 0 . This action will decrease w, and increase w.

and it is possible to make wI = W2 by proper choice of the parameters. It is

only necessary to require that

GMm/(b-a) - Gm 2 (4a ) = mW (b-a),

GMm/(b+a) + Gm 2 (4a ) = mW (b+a),

if the particles are to remain on the same radius to M for all time. If we

introduce a dimensionless ratio of frequent use, to be called the density

ratio X , as

(2am) [b 3 2m ][41) I
(2a) 3 1 M (4ur/3X2a3

then elimination of w between the two equations yields

b2(3b 2 + a)(

(b Z - a) 2 )2

The quantity X is a ratio of densities. The first term is the total particle mass
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(2m) divided by the volume of a sphere of radius (2a); the second term can

be interpreted as the mass of the primary (M) divided by the volume of the

orbit (radius b). If b>> a, which means that the distance between the

particles is small compared with b, then X = 3 very nearly. The density

ratio must therefore be 3 for the assumed motion to persist. If the value of

X is < 3 then the self attractive forces are insufficient to keep the particles

together and the simple model shows that the density ratio of a swarm of

particles must exceed a minimum value for the swarm to remain together.

The simple two-particle model is not realistic enough for the discussion

of a swarm of particles more nearly spherical in distribution. In fact the

assumed motion is unstable; the application of this result is of some interest

in other problems (orbital rendezvous and docking dynamics of space vehicles)

and is considered further in the Appendix.

The self-attractive forces in a spherical swarm are of a more complex

nature than in the two-particle model; the force exerted on any particle of a

spherical swarm with radially symmetric density, by the remainder of the

swarm, will tend to zero as the particle approaches the center of the swarm.

The self attractive force can become arbitrarily large in the two-particle model

and this singularity makes the model unsuitable for further study of the

stability of extended bodies composed of small particles.

The classical analysis of a spherically symmetric swarm of particles assumes

that the radius of the swarm is infinitesimally small compared with the radius
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of the orbit and that the density is constant. This work is briefly reviewed in

I and extended to the case of a finite swarm radius by means of an energy

integral. The influence of variable density can also be taken into account

in an approximate way under reasonable simplifications. Both effects increase

the least density ratio.

It is of interest to extend the basic result of the linearized analysis to the

case of motion with respect to two finite bodies in the sense of the restricted

problem of three bodies. In this formulation the two finite bodies rotate

uniformly in circles about their common mass-center and the third body is

infinitesimal in mass. That is, the third body moves under the attractive

forces of the two finite bodies, but does not influence their motion. The

spherical swarm of particles is the third (infinitesimal) body.

It is well known, in the theory of the restricted problem of three bodies,

that five equilibrium positions are possible, [2, chap. 8] . The three straight-

line configurations (denoted by LI, L2 , L3 ) are unstable for any mass-ratio

of the finite bodies. The two equilateral triangle solutions (denoted by L4,

L5) are unstable if > 0. 0385 where R is the ratio of the smaller finite

mass to the total mass. The L4 , L5 points are the vertices of equilateral

triangles with the two finite masses at the remaining vertices and in the plane

of the orbit. Since a small particle placed at L4 , L5 in the earth-moon system

(I 0. 0385) is at a position of stable equilibrium, at least according to the

small displacement criterion of a linear analysis, it will tend to remain in this



#351 -5-

vicinity for a long time; ultimately the particle will leave the L4 , L5 region,

to be replaced by other particles that are moving in the surrounding space. It

is therefore possible to have an accumulation of matter at the L4 s L5 points.

However, the condensation of such matter into a stable swarm would

again require considerations similar to that in I for a swarm moving in a

circular orbit about a fixed mass. In the present case the motion of a swarm

centered at L4 or L5 would again be circular about the mass-center of the two

finite bodies. The precise considerations for this case are given in II for

the case of a spherical swarm of constant density.

In the analyses outlined so far, the typical particle of the swarm was

assumed to be internal to it. This is necessary for the discussion of the

stability of the swarm and the determination of the least value of the density

ratio X . However, it is also necessary to consider a particle external to

the swarm. This is the case in problems which involve the tail of a comet.

Here we are concerned with particles external to the nucleus of a comet; the

tail is assumed to be so tenuous that the particles in it do not attract each

other but are influenced solely by the nucleus and the masses which can

influence the motion of the nucleus.

These considerations bring us to the problem treated in III, in relation

to the remarkable observations made at the Krakow Observatory by the Polish

astronomer K. Kordylewski. In the search for additional natural satellites of

the earth, Kordylewski looked for such objects near L4 and L5 . His
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observations indicate that two thin cloud-like satellites exist at each point.

The problem treated in III is this: is it possible to explain these observations

in terms of a simple dynamical model ?

The model assumes the existence of a small nucleus at either L point

(L 4 or L5 ) and the existence of tenuous matter near it. As a simplifying

assumption the action of the moon is neglected and the nucleus is assumed to

move in a circular orbit about the earth at a distance equal to that of the moon

from the earth. It is a simple matter to derive a Jacobi integral for the

particles external to the nucleus. If the velocity of the particles is very close

to the orbital speed at that point (L), it can be shown that the surfaces of

zero relative velocity become two small elongated tube-like surfaces near each

L point. If the relative velocity increases, these surfaces are much enlarged

physically or cease altogether, and the particles cannot remain near the

nucleus for any length of time. Under appropriate conditions not only can the

particles remain near the zero relative velocity surfaces, but if they do, they

must do so near two small regions. Kordylewski's observations at each L

point have indicated just such cloud-like formations; the observational

problems are serious ones but observations [14, 15, 16, 17] have been announced

for each L-point. Considerable work has also been done by others in the

search for natural satellites which are much nearer to the earth. Here again

the observational difficulties are great but of a different type; no announcements

have been made as to the discovery of such near-earth natural satellites.
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LIST OF MAIN SYMBOLS

a distance; orbital radius; semi-major axes

e eccentricity of orbit (positive)

G gravitational constant (units: L 3M- T 2

h constant (twice rate of change of area swept out)

K constant in Jacobi integral

k = GM/a 3 (units of k: T- )
L Lagrangian equilibrium point, in particular either L4 or L5

Mm Masses

R, r distances

u,v,w coordinates

X,Y;x,y, z coordinates

V relative velocity in Jacobi integral

v true anomaly

constant (mass/radius 3 of swarm)

y (MNI/4)0-1)

ratio of smaller finite body to the sum of both finite bodies in

the restricted problem of three bodies, (0< L < 1/2)

X density ratio, or the ratio of the density of the swarm to the

mass of the primary divided by the volume of a sphere whose

radius is the radius of the orbit.

, 71 coordinates
T = kt, dimensionless time

0 angle
9, V polar coordinates

angular speed

• d/dt (time differentiation)

d/dT (dimensionless time differentiation)
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The subject of interplanatary dust has been considered in several recent

(and many past) studies, [1, 3, 4] . The present requirements are reasonable

ones since such small dust-like particles are continuously moving in the

spaces of the solar system. In fact the discussion of the phenomenon of the

Gegenschein [2, p. 305] and [9] has some points of similarity to the present

case even though the L4 , L5 points are stable positions of equilibrium; in the

Gegenschein problem the L points (L1 , L2 , L3) are unstable positions of

equilibrium. However, Kordylewski's observations indicate that a pair of

cloud-like satellites do exist near each stable L-point. If it is assumed that

some matter can accumulate at L4 or L5 in the form of a nucleus, the

dynamical model can explain the form of the clouds observed by Kordylewski.

Finally, the least density of the nucleus, considered as a swarm, is of

possible interest in connection with space probes near the L4 , L5 points; the

actual density would seem to be comparable with the density of the atmosphere

of the earth well inside the re-entry altitudes (less than 50 miles).
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I. CIRCULAR MOTION ABOUT A FIXED MASS-POINT.

(a) Basic Equations: Linearized Analysis.

In Figure (2) consider the mass M to be fixed at the origin 0 of the

(x, y, z) coordinate system. The center of the spherical swarm is at

C(4, q1) in the z = 0 plane and point C moves uniformly in a circle of radius

2 2 2• where a = + q, and r is the

distance of any point P(x, y, z) of the

swarm to the origin 0, where

2 2 2 2
A, / C r =x +y + z . The swarm is assumed

to be spherical in shape and constant in

density. If a is the constant density

of the swarm then the mass contained in

a sphere of radius PC is m = (41r/3XPC) T

Figure 2 or m/(PC) = (4/3)r = = constant.

Under these assumptions it is easy to write the differential equations of motion

of P with respect to the inertial system (x, y, z) as

,P ~ 3_x = -GMx/r -Gp(x -) ,

= -GMy/r3_ Gp(y - 1 ) , (2)

= -GMz/r 3 - Gpz ,

where . = d/dt and G is the gravitational constant.
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The general equations (2) hold at P = C, that is, at x= , y=

z = 0 and r = a = constant:

3 3=-GM4/a 3  '= -GMq/a 3  (3)

If k = GM/a 3 the equations (3) both assume the simple form + k = 0

and we choose

= acos(kt) ,

(4)

= asin(kt)

as the coordinates of C as a function of time t . The equations (4) show

that it is convenient to introduce kt = T as the dimensionless time and a. as

the new unit of length; the dot (*) above a quantity denotes differentiation with

respect to the time t and a prime (') above a quantity denotes differentiation

with respect to the dimensionless time kt = T : k(*) = ( )' . We also

introduce new variables for (x, y, z) in a rotating reference system in which

C is the fixed point at the x-axis at unit distance from 0

x = a [(u+l)cos T - vsinT]

y = a[ (u+l)sin T + VCOS T] (5)

z = aw

Thus u, v, and w are all small quantities compared with unity. If the
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substitutions (4) and (5) are made in Eqs. (2) and the trigonometric terms

are eliminated the results can be written as

u" - 2v' - u = 1 -(u+l)/R 3 - ku,

v" + 2u' -v = -v/R - Xv , (6)

wo = -wir 3 - w

2 /M3 istea3ritif use is made of k = GM/a , and X = [(47r/3)a 3 M]a is the appropriate

density ratio, and R2 = 1 + 2u + (u 2+v 2+w2 ) . In the linearized analysis,

such as that outlined in Routh ( 6, p. 264-267] it is assumed that R- 2 = l-2u

and R = l-3u and the linearized equations are then obtained in the form

from Eqs. (6) as

U" -2v' + uX -3) = 0

V"+ 2u,+v(X) = 0 , (7)

w" + w(l+X) = 0 ,

if squares of u, v or w are neglected in the expansions. The third of

equations (7) has only oscillatory solutions since the density ratio is

positive. If, in the first two equations we set u = VT and v a Ue vT , the

condition on v is
[ 2z + (X - 3)] (-2v)

v0 , (8)
(i)[2 z x]
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or

4)v2 k - 3))=0

2
For stability v must be negative; since

2v = -(2k + l) *'1+16 ,

the requirement is that (1 + 16k ) be less than (1 + 2k)2 since X is positive.

This leads to the known condition

X > 3 (9)

which is the classical one discussed in Routh [ 6, p. 266].

According to Tisserand ( 5, p. 258ff], Schiaparelli obtained the criterion

on statical grounds that if X < 2 the swarm would dissolve due to the action

of the attracting mass. Routh's statement [ 6, p. 264] that Schiaparelli

required X > 2 for stability is not quite accurate since only the weaker, but

correct, assertion was made that the swarm would dissolve for X < 2 . The

dynamical argument shows that the swarm would also dissolve if X < 3 .

Tisserand [ 5, p. 269ff] also discussed the dynamical arguments, which

are due to Charlier and Picart; these are presented in simplified form in

Routh [ 6, p. 264f]. The case where the orbit is non-circular was also noted

briefly by Tisserand [ 5, p. 275] in connection with Floquet's theory of

ordinary differential equations with periodic coefficients. Tisserand noted that
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if the eccentricity I of the orbit is small compared with unity, then X > 3 + He 2

but he did not evaluate the constant H . Routh [6, p. 266] has given an

approximate treatment to show that H = 5 . The non-circularity of the orbit

therefore raises the least value of the density ratio. Rout h, [ 6, p. 406] has

also discussed the equally important case where the swarm is non-spherical

in shape but the orbit is circular. Picart [ 7] emphasized the importance of

using the true anomaly as the new independent variable in those cases where

the orbit was non-circular; see also [ 10]. Callandreau [ 8, 11, 12 ] also

contributed to the study of this question. Some indication of the value of the

transformations used by Picart will be noted briefly in IIc .

It is also possible to approach the problem of non-circular motion in a

different manner although we shall not go into details. For example, we can

assume that a spherical swarm is in arbitrary elliptical (parabolic, hyperbolic)

motion about a fixed M ; consider a particle on the surface of the swarm and

acted upon by the particles internal to it, by M, and by assumed surface

forces (tangential and normal) which constrain the particle to remain on the

surface. Thus the motion of the particle is given and the equations of motion

determine the value of the surface forces. The normal surface force can now

be set equal to zero. In the case of a circular orbit this condition again leads

to the requirement X = 3 and this value increases with e
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(b) Tacobi (Eneray) Integral; Arbitrary Swarm Radius.

The governing non-linear differential equations [6] can be integrated

once if the equations are multiplied respectively by u', v', w' to get

(u') 2 + (v') 2 + (u 2+v( -) -2u - 2 + 2 = const (10)

where the constants have been appropriately adjusted and the dependence upon

w has been assumed to be negligible for simplicity. The constant is zero

if u=v=0 .

If u = rcos(O), v = rsin(O) and if we write

(u') + (v') + O(r, 0; X) = const. (11)

22

then O (r, e; ) =( - l)r 2 Zrcos(e) - 2 + 2 (1r
4.. z +2 . (12)

The least value of X is required such that 0 > 0 for given (u, v) or (r. 0)

where (0 < r < 1) . For example if u, v are small and only quadratic terms
2 2

areretained, 0 =((X - 3)u +v and 0 >0 if and only if X> 3 for

arbitrary u, v; this is the known linear criterion.

In the non-linear case we can first assume that r is a fixed quantity and

seek to extremize 0; this fixes 0 as a function of r and three cases can

arise: cos 0 = -r/2 or sin0 = 0 (cos 0 = +1 or -1) . The first case leads to

0 = X r2 which does not restrict X . In the two following cases the condition
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cos e = -1 leads to the larger value of X in the form

X +r(3-2r)

(1-r) 
2

and this condition dominates the problem and t attains its minimum value under

these conditions. If r is assumed to be negligibly small with respect to

unity then the linear result X = 3 is again obtained. Otherwise X = 3+3r to

lowest order terms in r; in general the density ratio must increase if the

swarm increases in size. This is a result to be expected on physical grounds

and indeed we would expect the result to become unbounded as r = 1

(c) Swarm of Variable Density.

Since the radius of the swarm is almost always small compared with the

radius of the orbit, the effect of the finite size on X is rather small. However,

the effect of variable density is likely to be more marked. To take approximate

account of this effect we return to the first two non-linear equations (6) and

seek to modify the equations by a reasonable assumption about the variation

of density with the radius of the swarm.

The quantity P has been defined as the mass of the swarm divided by the

cube of the radius. If r = a- (r) is the density of the swarm as a function of r

41r r 2 a dr

3
r
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If it is assumed that

2

S= o e - yr (1 -2vr2)
03

2 2
then p =(4ora /3) e-yr = PO e-yr

The assumed density variation has been chosen conveniently to arrive at a

simple form for P(r); the density variation is reasonable since it is an

exponentially decaying function of r, and of course it is necessary that r2

be less than 3/(Zy) .

The differential equations now take on the form

u" - 2v' -(iu)-- (1 + u) -P e

(13)

2
v" + 2u' -vv v P-Yr

2 2 2
where r = u + v and rr' = uu' + vv' . The Jacobi integral can be written

as

(u') 2+ (v') - (u +v +2u)- 2 -(PO/y) e- Yr + (2 PO const (14)
2 2 0
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and an analysis similar to that for a finite radius shows that

[3 +r(3 -2r e yr2 ]

P1. 1 (1- r)

The effect of variable density is to increase the density ratio, which is again

a result to be expected on physical grounds.

(d) Concluding Remarks

The dominant result of the simplest linear analysis is that the density

ratio must exceed 3 for a stable swarm to exist in circular motion about a

large attracting mass. The effects of finite size of swarm, eccentricity of

orbit, and variable density all act to increase the least value of the density

ratio. For the purposes of section II it is reasonable to restrict ourselves to

the linearized analysis of a spherical swarm, but extend the analysis to the

case of the restricted problem of three bodies. Again the orbit is circular

and eccentricity effects can be neglected.
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II: MOTION IN THE RESTRICTED PROBLEM OF THREE BODIES.

(a) Equations of Motion in Rectangular Coordinates.

The restricted problem of three bodies will be formulated in the usual way

[2, chap. 8]; see Figure (3).

to- tA- +Ao

5.

P1. X

AiPhL 14, 0)

Figure 3

The plane of the orbit of the two finite bodies m(x 1, y, 0) and m 2(x2 , y2 0)

is the plane z = 0 and their mass-center is always at the origin 0 of the

inertial system. The center of the spherical swarm is at P(x, y. 0) such

that PP, P2 is an equilateral triangle. Thus P is at one of the stable

equilibrium Lagrangian configurations in the restricted problem of three bodies.

A general particle m of the swarm is at (4, , ), near to P; the maximum

radius of the swarm is small compared with the orbital radius a . It is

assumed of course that the mass ratio R of the smaller mass to the total mass

is small enough for P to be a stable point.
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Simple geometric considerations show that

rcos(p0  (r2 - rl)/2

rsin( ) = (a47)/2 , (a a rI + r.) ,

and according to the assumptions stated we also require

Xl -(m 2 /mlx 2 , y; = -(m 2 /ml)Y2 ;

m2 = M, mI =(- WM; (R =mjM) , (16)

rI = a, r 2  (l- )a,

The differential equations of motion of a particle inside the swarm are

I

a -Gml(& - xl/r3 - Gm,(g - x.)/r 3 - x)

-Gml(i1 - y,)/r, - Gmz(q - y,)/r 2 -GPq - y) (17)

=-Gm G/r - Gm 4/r 2  - GPrI

22 22 2

where rI 2 - x) + (? i-y 1) + 42

(1)

r2 + (1-Y2 2 + 2
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If however the particle were external to the nucleus of radius k the last

three terms on the right hand sides of equations (7) would be written, respectively,

as

- (1r 3 3)( a -f47rb 3 o- I3)(n -vi 1ib r/)
r3 r 3r

22 2 2
where (r is the constant density and r = ~-X) + (i-y) + L

Since the mass near P does not influence the orbital motion of m 1 and

m 2 we have the equations of motion

2 Gm, (x, - x,)/ a 3 and j? -Gm 1(y 2 - yl)/a3

where a =r I+ r., and M =m I + m2 . Since x I -(/1 - 1)x2 and

y= -(j~ll - W)y2 the result is that the differential equations can be written

as

i +k 2 x2 , 2 + k 2 y2  0

where k2= GM/a 3, and we assume that

x 2 = r 2 coskt = (I - pL)acoskt,

y2 = r 2 sinkt =(I- )asinkt,

x -r Icoskt =-IL acoskt,

y1 = -r1 sinkt =-,Lasinkt
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Since x = rcos(e + (o) = rcos(kt + o) ,

x = r(coskt) cos((o) - r(sinkt) sin( ,0)

(20)

x = (coskt)(r 2 - rI)/2 - (sinkt)(ar3/?)

The results for x and y are

x = a [(A-' cos kt -4a sin kt]

(21)

y=a[(' 2 sinkt+ NJ cosk t]

Finally we write

a + I u 2A cos kt" -v+ sin kt ]

a + sinkt +v+ ( :) coskt] , (22)

=aw,

which introduces a uniformly rotating reference system; in this new system the

finite masses ( &, 1 - I) are fixed at the points on the u-axis at distances

(1 - 1, ), respectively, from the origin. In addition the coordinates have

been chosen to make u and v small compared with unity since ( , y1) and

(x, y) are close to one another.
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(b) Stability Criterion.

The same assumptions will be made here that were made in the linearized

analysis of I, that is, in the equations

u" - 2v' - u = (1 - 2.)/2- (1-0. (u+l/2) Cu - 1/2 - Xu-3 - 3 -

p q

v" + 2u, - v = ('T,/2) (l-, u0Hv + -) .(v + - v (23)
p q

woo - (1-4IwIp3  -Rw/q 3  -Xw

where p2  (u+ 1/2)2 +(v+ 3/2 2 + w2

(24)
2 2 2 2q =(u-1/2) +(v+ 43/2)+ w

it is assumed that

p-3 =-(3/) (u + v013)

(25)

q-3 =-(3/2) (-u + v%1-3)

to lowest order terms. If terms quadratic in u, v, and w are neglected In

the expansions the equations can be written as
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u" -2v'+ ( X -31/4) - yv=0

(26)
v" + 2u, + X -9/4) - yu ,0

W" + (1 + X)w =0

where y = (34-/4)(1-2jL); the last equation again has only oscillatory solutions

and is independent of the first two equations. If in the first two equations

it Is assumed that u = Ue, v =VeVT the characteristic equation is

determined by

(V,2 + X - 3/4) -(2V + Y)

(2V -) (V2 + X - 9/4)

2
Again v must be negative for stability, and steps similar to that used in I

lead to the requirement that

X > (3/2) + J(yZ + 9/16)

If IL= 0, Y2 a27/16 and X > 3, asin I . Since IL is small in the earth-

moon system (approximately 1/82) and must be less than 0. 0385 for stability

at the L4 , L5 points in any case, it can be assumed that 1 is small compared

with unity. If first order terms in R are retained the result is that

X• 3- (9/4) I .
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The least value of the density ratio is therefore changed by about one per-cent

in the case of the earth-moon system.

(c) Concluding Remarks

(i) The stability criterion, based upon a linearized analysis, shows that

the least density ratio of the spherical swarm is 3 - (9/4)R . In the presence

of a single body the criterion is X > 3 but it must be recalled that the masses

used for comparison are not the same in both cases. In the latter case we

have

X I s /[M/(- ra)] > 3

where MeE is the mass of the earth and s = density of the swarm . In the

former case we have

x = a-s/[(M + M )/(! a > 3 -(9/4)R

where Mm is the mass of the moon. Comparison of the two density ratios

shows that X =Yl(l - )

or X l > 3 + (3/4). ,

in terms of the mass of the earth. Since the effect is small in either case we

evaluate the density 3M/(4ra 3/3) = [3M/(4rR 3/3)][(RIa) 3 ] where M is the

mass of the earth, R is the radius of the earth and a is the lunar distance.
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Since the first factor is the mean density of the earth (5.5 gm/cm 3) and the

second factor (a/R) is approximately 60, the density is approximately

3(1/13, 000) grams/cm3 . This is the least density of a spherical swarm at

the lunar distance, or one located at either L-point. The density of the

atmosphere at sea-level is approximately (1/800) grams/cm3 and is decreased

by a factor of 10 for each 12 miles increase in altitude, roughly [13]. Thus

the density at 12 miles would be (1/8000) grams/cm3 and (1/80,000)

grams/cm 3 . The least density of the swarm would therefore be equivalent to

the density of the earth's atmosphere in the range 12-24 miles above sea-level,

or well within the re-entry altitudes.

(ii) Although an explicit Jacobi integral does not exist if e 0 0 in the

restricted problem of three bodies, it is nevertheless possible to write as

follows: The same general notation is adopted as in (Ha), but now

zr-a(l-e 2 1 (0 < e2 < 1); v is the true anomaly, and
2 - 1 + ecosv

2.2 rcosv ; x= -[(Gx)/(l-)]cosv r v=h

Y2 - rsinv ; Ya -[(Mr)/(l -Rj. ]sinv; h= GMa(l - e )(l - 143

The true anomaly v is now used as the independent variable in place of the

time t . In the case of a circular orbit the differentiations with respect to

these quantities differ only by a constant but in the present case this is not so.

Since r = (eh)(sinv)/[a(l - e )] and ' = h/r 2 , we require the change from time
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differentiation (denoted by a dot) to differentiation with respect to the true

anomaly (denoted by a prime). If f is a given function we have f - (f' and
.• . .2

f = f'v + f"(V) ; with the previous results this leads to

0h4

f-Zehsinv f, + h2 f"
a(l-e )r3  r

Non-uniformly rotating coordinates are now introduced by means of the

substitutions

= Xcosv - Ysinv

- Xsinv + Ycosv ,

=Z.

The finite masses are always on the X-axis, but do not remain at the same

locations. Finally, since r is now a variable we introduce new distances so

that the instantaneous distance between m1 and m2 is the unit of distance;

this changes with time of course and we write

X xr, Y=yr, Z=zr ,

where (x, y, z) are the new dimensionless coordinates. In the subsequent

transformations we use the facts that r'/r 2 es2ny and 2r3 -
a(l-e ) r r a(l-e )



-26- #351

The ultimate result is that

(1 +ecosv) ( (x') 2 + (y') 2 +Wz) 2 ] (x 2 + y 2 Y (ecosv) (z 2  + I-+ A]
P1  P2

where P2 = x+1)2 +y2 +2

P 2 z(x[-1pIL) 2+ y 2+z2

Clearly if e = 0 the differentiations with respect to the true anomaly (') and

those with respect to the time (') are proportional to one another and the

result above reduces to the usual form of the Jacobi integral (2, p. 281)
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III: DYNAMICAL MODEL FOR THE CLOUD-SATELLITES AT THE L4 AND L5

POINTS OBSERVED BY K. KORDYLEWSKI (KRAKOW OBSERVATORY).

(a) Observations of K. Kordylewski

Three recent issues (1961) of "Sky and Telescope" have announced the

observations of K. Kordylewski with respect to cloud-like satellites at the

L4 and L5 points, [14, 15, 16, 17]. In the first of the issues [14] a pair of

cloud-like satellites was observed near the L5 point, which is the trailing

point 600 behind the moon. The two libration clouds were both near L5 ,

several degrees apart and it was suggested that similar clouds could be found

near L4 * The brief announcements in the first issue were supplemented in

the August 1961 issue [15] where some of the observational difficulties were

noted. The luminous patches appeared to be at least two degrees in diameter;

two clouds about eight degrees apart were identified and it was also suggested

that large telescopes be used to locate individual meteoroids in the libration

clouds. The third note, in the December 1961 issue [16] confirmed the existence

of such clouds near the L4 point as well. The preliminary results indicate

that the L4 object was detected as a pair of dim spots, each about five degrees

in diameter and nearly touching. Some direct measurements were given in

[17] by K. Kordylewski.

(b) Basic Eiuations for the Dynamical Model.

The dynamical model has been outlined in the Introduction; this consists

in the assumption of a small mass at or near to one of the L-points (L4 or L )
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and tenuous matter (dust) in the surrounding space. It will be assumed that

the nucleus as well as the cloud near it move in a circular orbit about the

earth at a distance equal to the lunar distance. The effect of the moon will

be ignored in order to simplify the presentation. Since the sphere of activity

of the moon [18] is too small to enclose either L-point it is reasonable to

neglect the effect of the moon. More precise calculations show that the effect

of the moon is slight in this case, although the moon does of course determine

the location of the L-points and the fact that they are stable equilibrium

points in the earth-moon system.

The small mass of the nucleus is m(x,y) in Figure (4); a is the lunar

distance and the plane of the orbit of m

) is the Cx, y) plane. A general particle

/L of the cloud is at (A, q, Q and the

distance from the nucleus to any particle

is r2 which is small compared with a

ao
and rl, the distance to the earth of mass

M at the origin; the ratio m/M - P is

Figure 4 assumed to be much less than unity.

The particle (6, ,1, ) is near m but outside the radius of nucleus. The

general particle is attracted by m and by M but does not influence their

motion; m is in circular motion about the fixed mass M . The equations of

motion can be written as
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-GM/r _Gm(g-x)/r 3

3 3n = -GMn/r 1 - Gm(tn-y)/r , (27)

= -GM,/r - Gmt/r ,

where G is the gravitational constant, and

2 2 +2 +r1  +i +~ ,

r (2-x) 2+ (ri-y) 2+ t

2

2 3x = acos(kt), y = asin(kt); k2 = GM/a

A rotating coordinate system is now introduced in which m Is a fixed

point on the X-axis; the unit of distance is chosen to be a and the

dimensionless time T = kt is introduced as the new independent variable,

with '=d/dT

= a[XcosT - Ysnin]

T a[Xsin T - YCOST] , (28)

aZ

In addition we have that m/M = p and
2 X2 y Z2

RI = +Y+Z ,

R2 = 2 + Z 2 R R
2 i2 > )
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The final forms of the differential equations are

3 3
- 2Y' - X = ,- X-l)/R2

Y" + 2X' - Y = -Y/ - PY/ , (29)

Z13 3" -Z/R 1 - PZ/R.

(c) acobi Integral: Discussion of Zero Relative Velocity Surfaces

If the equations (29) are multiplied by X', Y', Z' respectively and

integrated the result is the Jacobi integral in the form

V =(x) +(Y z) +(Z) =X 2Y +2 +2- -K (30)
R,

where K' is a positive constant in most further discussions. The discussion

of the possible zero relative velocity surfaces is simplified if cylindrical

coordinates are introduced:

Z = I+ pcosp O

Y = p sinq , (31)

Z = z .

Terms up to O(p ) will be retained and particular attention will be paid to the

value z z 0 and to those values of z that are small compared with the radial

distance p
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The Jacobi integral can be written as

2 = 3p 2  2 q+ 2+z 2  (K- + z?) , (32)

2
where K' + z will be denoted by K, a constant for constant z . In

particular if z = 0 the Jacobi integral can be written as

a 2 2 (33)V= 3p Cos 4P+( -K (33)
p

which is the form which will be used most frequently. If a particle is assumed

to be at a given point (p 0 qo) with a given speed then the constant K is

fixed; if V is zero in Eq. (33) the curves will be the traces of the zero-V

surfaces (z = 0), if they exist.

The dynamical equations of motion can also be written in terms of the

cylindrical coordinates. If simplications are introduced which are consistent

with Eq. (32) the equations can be written as

.. p(q.)2 -_ 2p' 3pcos2 O- 2 23/2
(pz + z )

p9" + 2 p'o' + 2 p' - 3psincosf , (34)

zoo =- Z O z

(p + zZ)3/2 ,

where V2 = (p') 2+ (p,) 2+ (z') 2 However if (z/p) 44 1 the right hand

sides of Eqs. (34) can be replaced by 3pcos 2' - (/2 p); - 3psin'cosq; -z

respectively, In the latter case the last equation of (34) is z" + z = 0 which
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has only oscillatory solutions and so the motion of z is known.

The dynamical equations (34) of course determine the actual motion of

each particle if the initial conditions are prescribed. However much more

interest is centered on the Jacobi integral (33) which yields a relationship

between the (relative) position coordinates and the speed in any realizable

motion. That is, if K > 0 it is possible for V to equal zero by proper choice

of (p, -F); if V2 the square of the initial speed, is sufficiently large then

K is negative and it is not possible for V to vanish. Thus in the latter case

no surfaces of zero relative velocity exist but in the former case (K > 0) they

do exist. Our object is to study such surfaces, or more precisely stated,

the traces of such surfaces (z = 0)

It may be assumed that K has been determined as

K3p2Cos2 + (2P/po) -V >0 , (35)
0 0 0-

and that we have set V = 0 to obtain the equation

P3 cos 2 p - Kp+ 2P a 0 (36)

The cubic equation in p has one real negative root since the leading coefficient

and the constant term are positive; this root is of no physical interest. The

remaining two roots are either conjugate complex roots or both positive, since

the sum of all roots is zero; our interest is in the latter case, which requires

that cos 2 < 3 /( 81 2 ) • (37)



#351 -33-

In the form of the inequality (37), two cases of immediate interest

arise. In the first, if K3 > 81P 2 , then no restriction is placed on q, since

the inequality is always satisfied; it is assumed of course that K must be

positive in all cases. In the second case, if K3 < 81P 2 , then there is a

restriction on rp and not all angles are possible; the admissible regions for

(p are shown shaded in the sketch below, Figure (5).

__)

Figure 5

If K3 > 812 , all angles are admissible; in particular the limiting case is
recedi 3 82; 2

reached if K 812 ; if cos p = I the cubic equation can be written as

3R 3-R+y= 0

where -p =SK" and -2 ==42/K3-4/9 . The cubic 3R 3 -R+ ( 2 /9)= 0 has

the repeated root R = + (1/3) or p= (Ii)/3 . The traces in this case are

shown in the sketch below, Figure (6), and are denoted by C1

CL C C

CA

a ,-77 -17717,r7 /

Figure 6
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If K3 is larger than 81 2 the traces are indicated by C2; for such values

of K (P fixed) there is a closed inner oval and a pair of curves which extend

to infinity and reach the asymptotic width 2%1(-K3 in all cases. It should

be recalled that the unit of distance is the lunar distance a . Thus as K

increases the inner oval becomes smaller in size and the outer traces move

outward; the asymptotic width increases with K . The regions of positive

V are outside the pair of curves and inside the oval. These regions are

indicated for C2 by cross-hatched lines. The critical distance along
=0 occurs for C1 /3 K/9 = = P 2 2 For example,

= K/9 (3 19 )P -crit = PC o xape

if a particle is placed ((p = 0) at the distance p with V0  0, then if p2< P2

2 2
the particle must remain inside the oval, but if p > Pc the particle must

remain in the region external to the outer traces and cannot penetrate to the

L-region. A particle placed at a in Figure (6) with V0 = 0 will remain there

according to the equations of motion; a particle placed at b will move outward

but a particle placed at c will move inward (V0 z 0) . If the initial speed

V0 is not zero then a similar analysis can be made if we require that K3 be

2at least 81 ,

If however V0 is large enough it is possible for K3 to decrease and remain

positive so that K3 is less than 81P 2 but greater than zero. The traces then change

in form and only certain ranges of p are admitted, as shown in a typical case

in the sketch, Figure (7).
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Va.< 0

Figure 7

The regions of negative V are inside the branches and the particles cannot

enter such spaces. The asymptotic width of the branches is still 2 %('K--3

but now K is smaller than in the previous case and so the asymptotic width

is much narrower.

In the present case consider a particle in the admissible region with

V2 >0; see Figure (8). Since V2 = 3p 2 cos 2 + 21 - K , K = 3p2 COS 2 q+ - - -V 2

0 
0 PO 0

At point P, K is fixed by the initial coordinates and speed (energy). If in

Figure (8) the particle moves toward Q, V will decrease and similarly for

the points R, S, ... which approach the curve of zero relative velocity.

Figure 8
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The equations of motion (34) of course determine the actual path in the relatives

coordinates. The acceleration is not zero on the zero relative velocity curves,

but is normal to the curves and directed outward. If some particles move toward

A, B, ... then clearly (2 P/p) will increase and so will V2 and the particle

can move rapidly toward the L-point which is the origin of the coordinate system.

The essential point is that some particles may approach to the V = 0 curves

and remain there for an appreciable time and a slow accumulation of matter can

take place near such curves. If K is smaller at P than before, the curve

V = 0 is thinner and inside the one shown in the sketch above, Figure (8). The

intersection point with the axis is 2P1K and this point moves outward. Thus

a narrow region of space (z = 0) acts as an area where particles may move

slowly and accumulate. Ultimately these particles will drift into other regions

of space but since there is a steady drift of such particles throughout the space
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there will always be new particles streaming into the region to replace those

which may have moved away. This requires that the particle speeds be close

to the orbital speeds at the L-points since K is small (small relative velocity).

If the initial speeds are large enough then no zero V surfaces can exist; this

is reasonable for it indicates that the particles cannot be trapped, or brought

near to rest, in the vicinity of the L-point. This is the case if

V2> 3p2 cos 2 + 2, and therefore the right hand expression can be considered

to yield a minimum escape speed in the region near the L-points.

If z is not zero, but still small compared with p, then the constant in

Eq. (32) is merely increased slightly. The discussion is essentially the same as

before, but now we require that (K + z2) 3 > 81 2 and this also limits the region

in the z-direction. It is problematical if this knowledge could be exploited

observationally to determine an approximate value of P; it is not likely that

the observations are clearly enough defined for this to be the case, or if the

form of the clouds is in fact constant in time.

The equations of motion, Eqs. (34), could be used to investigate

further the particle motions near the zero-V surfaces; a simplified analysis,

which is omitted, indicates that the particles will tend to move away from such

surfaces (V = 0) more quickly near the L-points and less so away from the

L-points.
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(d) Concluding Remarks

If the dynamical model is assumed to consist of a nucleus surrounded by

dust particles moving near the L-regions then the main tool in the investigation

of the possible regions where such particles may migrate is provided by the

Jacobi integral. The constant K is fixed by the initial conditions. If K is

negative then V0 is so large that no zero V surfaces are possible and no

particle can come to rest near L (unless it strikes and is absorbed by the

nucleus). If V is sufficiently small and K3 exceeds 81P 2 then we have0

the case shown in Figure (6), but if K3 is less than 81 2 we have the case

shown in Figure (7). The asymptotic width of the curves is proportional to

NIK and this means that the curves are much thinner in the latter case, which

is the one where the zero-V curves split into two narrow branches. Although

in the former case a single surface is possible this is much wider and the

accumulation would not be confined to successively narrower regions. The

dynamical model assumed therefore gives rise to the possibility that faint

cloud-like patches may appear in the region of the L-points.
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APPENDIX: STUDY OF THE STABILITY AND MOTION OF THE TWO-PARTICLE

MODEL.

In the Introduction the circular motion of two equal infinitesimal particles

of mass m was considered in relation to a fixed mass M . The value of

X = mb 3/(4Ma 3) is 3 if (a/b) is much less than unity. If, for example,

m = 2500kg, then 2m = 5000kg or about 11,000 pounds. If two such masses

are in close circular orbit about the earth it is interesting to compute how

close two such bodies must be for P to equal 3 . If the distance b is kR

where k is a constant multiplier and R is the radius of the earth, and use is

made of the fact that the mean density of the earth is 5.5 gm/cm3 then the

distance between the two particles (2a) is given by 2a = 41.5k in centimeters

for the given data (m = 2500kg) . Thus at a distance of 10 earth radii

(40,000 miles), Za = 415cm or 4.15 meters or approximately 13 feet

These figures would change if the distances and densities would be those for the

moon, since the density is lower and the radius is smaller.

The question of the stability of such an assumed motion can be investigated

in a simplified way if we restrict ourselves to the orbital plane of motion;

see Figure (9).

22 r 2

L 2r -Zrlrcos(f), (L >0)

Figure 9
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The equations of motion in polar coordinates are

r l -l  = l/r2 - (Gm/L )(r - r 2 cos F)

r: :1 1 +rl = (Gm/L 3) (r2 sin q) r

(38)• 2 2 2 3
r r2 b2  GM/r 2 - (Gm/L)(r 2 - r 1C o s 9 )

r1 2a + 2 i2b2 = (GmlL 3)(rI sin p)

In the case of uniform circular motion it is assumed that

r = R= constant,

0 = osat 1 = 0 2 = (Wt) (39)r 2  R 2 =constant,

= constant

which implies that 9 -0 and L = IR2-Rll = d > 0; the second and fourth

equations in Eqs. (38) are identically satisfied and elimination of 2 between

the two remaining equations leads to

3 2

m d (12 RlR2 + Rjj

M R=? R 2) (40)

which is equivalent to the relation (1) . The following two expressions for 2

will be of use in subsequent work:
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2 3 3 (1z (GM/R) (Gm/d )(R2-R 1 )/R 1 , (41)

2 3 3 (2w = (GM/R 2 ) + (Gm/d )(R2 -R1 )/R. (42)

In the slightly disturbed motion it is assumed that each of the 4 coordinates

may be varied; that is,

r  R, (1+ p 2 ) 0 1 = t + a(43)

r 2 =R2(l+ P2) 0 2 = t a2 I

where pl, p2 , a , a2 are dimensionless quantities. It is also assumed that q

is so small that cos p = 1 and that sin q = 9 = a2 ; only terms linear in

P) a will be retained in the stability analysis. Finally we set wt = T with

denoting d/dr, and approximate the binomial expansions in the usual way:

2= R 1( - 2 p,) and similarly for subscript 2, and

C-3 = d 3l 3 (R2P2 Rlpl)(R R)

The first dynamical equation can be written in the following way, after

simplifications have been made:

Gm rR -RIJ )l + ( rm h)

R (44)



-44- #351
2

The relation for c , Eq. (41)1 permits this result to be simplified to the

following form if Gm/(w 2d) = 61 and R,/R2)= 2

(45)

pj'' 3p, - 2a, = -2(6 1/6 2 )(p 2 -P 2 )

The second dynamical equation can easily be simplified to the form

'al + 2p= (61 /6 2 )((a.-a1 ) (46)

The remaining pair of dynamical equations can be simplified in the same way
a

if the alternative expression for wo , Eq. (42), is used. The four equations

can be written as

p$ - 3pi - Zaj - -Z(6l/6 2 )(p2 - =-1/z -6

a" + 2)(22P) 3P I

1" + 2pj (61/6)(a - a,) = (3/2)(&z - a1),

(47)
P- 3 p2 - 2a 2(61 62)(p 2 - pl= = 3(p- pl)

al + zp - (6I 62 )(a 2 - a,) = (3/2)(a2 - al)

22where the second set of right hand sides are approximations to those which

precede them since (R/R 1) = 62 is very close to unity and (Gm)/( d 3) = 61

is nearly 3/2 under the same assumptions. If the simplified forms are taken

the above set of four equations can be decomposed into the following two pairs

of equations by straightforward additions and subtractions. The first pair of
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(p 2 + pl)" - 3( p2 + pl) -2(0 2 +a,' = 0 1
f, (48)

(a + al" + Z(p 2 .+p) 1  = 0

(- pPl " - 9(p 2  pl ) - 2( a z - a )' =01

(a- al)" + 3(a2 a + (p2 - Pl)' 

equations relates to the motion of the mass-center of the pair of particles and

the second pair to the relative motion of the particles. To determine the

solutions let

Pl + P2 = Ae T , a 1 + a 2 = BeI T

and

PI -P2 = Ce T aI - a 2 =De ,

in the two sets of equations respectively. The two characteristic equations

are

(Rz 3) -Z (v 2 - 9) -2v

=0 and SO

21. R 2v 2 2(v2 + 3)

or

R =0,t -l and V2 = 1* 2-8 .(50)
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Thus the disturbed motion is unstable both with respect to the motion of

the mass-center and the relative motion with respect to the mass-center. The

complete solution for all four quantities can now easily be carried out, but

more direct interest is in the solution for the relative motion; this is the

motion which characterizes the separation of the particles. Here we have the

relations C(v 2 - 9) = (2v)D for the coefficients. If v = 1 + 28 v = *2.51

and C/D a; 1. 8 6; if v 2 =1- 8, v =. 08 and C/D=- W.156. If

new coefficients are introduced as

D1 =(E1+E2 )/2, D2 =(EI-E 2)/Z and D3 =(E3+iE4 )/(2i) , D4 =(E3-iE4 )/(2i) ,

the solutions for the motion of separation can be written as

a2- a E1 cosh(2.51T) + E2 sinh(2.S1T) + E3 cos(2.08T) + E4 sin(2.08T), (51)

p2 - p1 = -1. 86Elsinh(2. 51T) - 1. 86E2 cosh(2. 51T) - 0. 156E sin(2. 08T) - 0. 156E4 cos(2. 08T)

3s

(51)

and the solutions for the motion of the mass-center can be written as

a2 + aI = (F1 + F2 T) + F3 COS(T) + F4 sir(T)

(52)

P? + p1 = (Z/3)F? + (1/2)F 3 sin(T) - (1/2)F4cos(T)

in terms of new constants; there are 8 arbitrary constants since the position

and velocity of each particle can be prescribed. At t = 0 all 4 coordinates

may be assumed to be equal to zero, that is, a 2 * a1 =0 and p2 *p l =O and
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only 4 constants remain in the solutions:

a2 - a E(cosh 2.51T - COS 2.08T) + E2 (sinh 2.5IT - 11.9 sin 2.08T)
2 1

P2 - = E1(-l. 86sin 2. 51r + 0. 156sin 2. 08T) + 0. 186E 2(-cosh 2.5h" + cos 2. 08T)

a2 + 1 = FI( - cos T) + F2 (T - (4/3) sinT) , (53)

P2 + P1 = -(2/3)F 2 (I - cosT) -(1/2)F sin T

The equations may be solved under various initial conditions.

For example we may set (p 2 - p1
) ' = 0 and (a 2 - a,)' a qo and determine

the time T = T* at which (a 2 - a) vanishes. This requirement leads to the

equations

a2 - a1 = 0.044qo [sinh 2.51T - 11. 9 sin 2.08T] , (54)

(54)

P2 - P 0. 186(0. 044qo) [-cosh 2. 51T + cos 2.08T ]

and if a2 = a I at T = T* , (p2 - p) P0 , a given number, then

sinh 2.51T* 11. 9 sin 2.08T* .

The value of T* is uniquely determined from this equation and p0 corresponds

to the condition r1 = r2 . Thus the second equation of Eq. (54) fixes the

value of q0 for this motion to take place. That is, qo is now fixed so that



-48- #351

at T = T* the angle (p will be zero and the distance of separation will be

zero; in order for this to hold under the assumed initial conditions, only

one value of q is possible.


